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CHAPTER I
INTRODUCTION

The classification or discrimination problem arises when an exper-
imenter makes a number of measurements on an individual and wishes to
classify the individual into one of several populations on the basis of
these measurements. As an example, consider a lot of electronic parts.
Each part is to be classified as defective or nondefective, the criterion
being the length of time to failure. If the length of time to failure is
less than some preassigned period of time the part is classified as
defective and otherwise as nondefective. Obviously, each of the parts
cannot be tested to see whether it is defective or not as the necessary
test would be destructive (i.e. the part would be tested until it failed).
The discrimination approach to this problem is to make several measure-
ments on a part and then classify the parts as defective or nondefective
on the basis of these measurements.

Some widely used classification procedures require parametric
assumptions. An example of a procedure of this kind is the one based on
the classical normal discriminant function, which may be found in
Anderson (1958). Many people using this procedure have been concerned
with the parametric assumptions that necessarily must be made. For this
reason, nonparametric classification procedures not reguiring parametric
assumptions are desirable. However, very little work has been done in
developing such nonparametric classification procedures. In this paper
a nonparametric discrimination procedure is presented. Certain optimum

properties of this procedure, mainly asymptotic, are shown.



In the process of developing this procedure, the probiem of finding
a nonparametric estimator for a probability density function arose.

This is a problem of considerable inportance in its own right. Such an
estimator is introduced in this paper and properties of this estimator
are studied. The development of this density estimator is a principal
part of this paper. A nonparametric classification procedure is almost
an immediate result of obtaining this density estimator.

Since one of the important properties of this nonparametric density
estimator studied here is an asymptotic property, a small empirical
study was made on the IBM 1620 computer. The purpose of this study was
to see how the density estimator behaved in practical situations for
finite sample sizes. In particular, this work provides some guidelines

as to the required sample size for the procedure to be reasonable in

practice.



CHAPTER II
REVIEW OF LITERATURE
2.1 Literature on Nonparametric Classification

The classification problem was introduced in Chapter I. In the
example given in Chapter I there are only two populations involved, the
defective or the nondefective. Two types of errors can be made in
classifying a part. It can be classified as nondefective when it is
actually defective or vice versa. The problem is to find discrimination
procedures that minimize the probabilities of these errors.

The notation to be used in this simple two population case is now
introduced. Let F and G be the distribution functions of two random
variables, X and Y respectively. F and G are assumed to be absolutely
continuous. The corresponding probability density functions are f and g.
X and Y are assumed to be p-dimensional. A p-dimensional random variable
7 is assumed to have either the F or the G distribution. The problem is
to decide on the basis of z, an observed value of Z, which of the two
distributions Z has. In other words, the problem is to decide which
population z belongs to.

Fix and Hodges (1951) have broken the classification problem into
three subproblems according to the assumed knowledge about F and G.
These are:

(1) F and G are completely known,

(2) F and G are known except for the values of one or more para-

meters, i.e. the functional forms of f and g are known except



for parameters,

(3) F and G are completely unknown except possibly for assumptions

about existence of densities, etc.

Subproblem (1) is completely solved, since the discrimination depends
only on f(z)/g(z), by the Neyman-Pearson Fundamental Lemma (cf. Welch
(1939)). An appropriate ¢ is chosen and then F or G is chosen as
follows:

choose F if f(z)/g(z) > ¢

choose G if f(z)/eg(z) < c

choose F or G arbitrarily if £(z)/g(z) = c.
Fix and Hodges (1951) call this the "likelihood ratio procedure" and
use the notation L(c) for it. It is convenient to assume that P-{ﬁ(z) =
cg(z)} = 0 and this is done hereafter.

For subproblems (2) and (3) semples X5 Xpy oees X and ¥, Ypr +ces
from F and G, respectively, are assumed given. In subproblem (2) it is
further assumed that f and g are known except for values of a vector
parameter ©, where © belongs to the set JL. Thus f and g may be
written as £(0) and g(6). The most common approach to subproblem (2)
is to use the samples of x's and y's to obtain an estimate 3 for ©.
Usingje\ the values f(g) and g(a) are obtained and then one proceeds as
if f and g are known as in case (1). An alternative method is to use

the likelihood ratioc criterion to set up a discrimination procedure.

Y.



Examples of both of these methods are given in Andersoﬁ (1958), pp. 137~
142, for the case of underlying normal assumptions. The first method
leads to the procedure based upon the classical discriminant function.
These approaches seem reasonable if the underlying assumptions are valid.
In the discriminant function case, for example, if there is much departure
from the normality assumptions very little is known about the validity
of the results.

From the above discussion the need for ways of solving subproblem
(3) is seen. This is known as the nonparametric discrimination problem.
Here there is a minimum of underlying assumptions. Fix and Hodges (1951)
and (1952) were the first to work on subproblem (3). Their work is
discussed in some detail here because it is pertinent to the succeeding
work. Stoller (1954), Johns (1960) and Cooper (1963) have also considered
this problem and some discussion of their work is also included.

No nonparametric classification procedure exists that is better
than the optimum procedure available if the density functions f and g
are assumed completely known (cf. Fix and Hodges (1951)). The L(c)
procedure can therefore be used as a sort of limiting procedure to try
to approach with a nonparametric procedure. Intuitively, it would
seem that a good nonparametric procedure should have a limiting form
which is in some sense consistent with L(c). Fix and Hodges (1951)
have made these consistency notions precise. They formulate definitions

in terms of sequences of decision functions.



Consider a finite decision space with elements d ey ds' For two

l)
populations there are only two decisions, dl and d2. Let {DA}' and {IE:}
be two sequences of decision functions. For example, DA is a function
which for each n chooses one of the decisions dl,...,ds (or in the
setting of this thesis, Dﬁ chooses the population into which z is
classified). These decision functions will usually depend on n observed
values of some random variable. Two ways in which these two sequences
can be thought of as being consistent with each other are now considered.
First, for each n there is a probability that Dg will make the decision

» ebte. The same thing is true

d that DA will make the decision 4

1’ 2
for D;. If the probabilities that DA and Dg make the decision di

are nearly the same for all i as n increases, then in this sense the
sequences are consistent with each other. Secondly, it might happen
that there is a high probability that DA and D; will make the same
decision as n increases. These ideas motivate the following definitions

of Fix and Hodges (1951).

Definition 1 We shall say that the sequences {Pé& and {P&}-are consistent

in the sense of performance characteristics if, whatever be the true
distributions, and whatever be € > 0, there exists a number N such that

whenever m > ¥ and n > N,
T - no_
]P@n = di} P{Dm ayI<€

for every decision di.

- md




Definition 2 We shall say that the sequences {P;} and{}{geue consistent
in the sense of decision functions if, whatever be the true distributions,

and whatever be &€ > 0, there exists a number N such that whenever m > N

P(D' =D"‘S>l “E ..
n m

Consistency in the second sense implies consistency in the first sense,

and n > N,

but not vice versa (cf. Fix and Hodges (1951)). It is generally
convenient to use definition 2.

Earlier discussion has shown that in nonparametric discrimination
it would be desirable to have a way of comparing a sequence of decision
functions and the L(c) procedure. The following definition is a

specialization of definition 2 which does this.

Definition 3 A sequence {Pﬂ 3 of discrimination procedures, based on

I

Z and on samples X9, X ..,xn from F and Yys¥ps ¥y from G, is said

NE
to be consistent with L(c) if, whatever be the distributions F and G,
regardless of whether Z is distributed according to F or according to G,
and whatever be € > 0, we can assure

P &Pn,m and L(c) yield the same classification of i)'> 1 -2
provided only that m and n are sufficiently large.

Dn o has the double subscript as each D is a function of xl,x
>

YRR

X > yl,y2,...,ym and Z. Both m and n get large in the sequence {?Dﬂ;}'



Theorem 1 of Fix and Hodges (1951) concerns consistency in sub-
problem (2). It shows the relationship between consistency in estimation
and the consistency of sequences of decision functions as defined above.
The following additional notation is needed in order to state this theorem.
Let P, denote probabilities computed assuming that Z is distributed

1

according to F and P2 probabilities computed assuming that Z is

distributed. according to G. Let ”} = {f@ lo Eﬂ} andb = {gg lo ¢ ﬂ) be
classes of density functions. It is assumed that some notion of
convergence is defined inJdL and @ may be a vector. Suppose that for

~
each n and m there is an estimate @n o for © which is a function of
s

XprXpy ooy X and Yys¥pre sV
Theorem 2.1 If,

A

(a) the estimates @nﬂ;}are consistent;

(b) for every O, fg(z) and gg(z) are continuous functions of © for
evefy z except perhaps z € Z where Pi(ZG) =0, i = 1,2, then the
sequence of discrimination procedures {?h}m(c[}'obtained by
applying the likelihood ratio principle with critical value

¢ >0 to fa (z) and g@ (z) is consistent with L(c).
n,m n,m

Fix and Hodges (1951) prove this theorem and the proof is similar to the
proof of Theorem 2.2 given below.

With this background, the way is clear for discussion of subproblem
(3). It should be recalled that the assumptions being made for this

case are only that F and G are absolutely continuous. Consideration of



the L(c) procedure and Theorem 2.1 suggests an approach to subproblem (3).
In the L(c) procedure, once z is given, the only information needed to
make the discrimination is f(z) and g(z). In Theorem 2.1, f(z) and g(z)
are not directly available so they are estimated. This is done by first
estimating © and then using this estimate of © to estimate f(z) and g(z).
Likewise, in case (3), f(z) and g(z) are not directly available, but these
densities are not characterized by a parameter ©. Therefore, it seems
logical to try to estimate £(z) and g(z) themselves. Estimating the
densities f and g at 2z is a problem of considerable merit in its own
right. Consequently, a later section will be devoted to the literature
of this subject. It will include work done by Fix and Hodges on this
problem while they were investigating the nonparametric classification
problem.

Suppose estimates ?‘and.é?for f and g are available. If the L(c)
procedure is applied using these estimates for f and g the resulting
procedure is designated by L*(c,?,g). Theorem 2.2 below, due to Fix
and Hodges (1951), states what type of estimates T and g should be in
order for the procedures L%(C,E,é) to be consistent with L(c). This
theorem is basic to the work of this paper. For this reason and since
the proof does not explicitly appear in Fix and Hodges (1951) it is
included here.

A PN
Theorem 2.2 If f (z) and g, m(z) are consistent estimates for f(z)
2

2

and g(z) for all z except possibly z & Z where P.(Z_. ) =0, i = 1,2,
f,g i~ 1,8



A A
then L¥ m(c,f, ) is consistent with L{c).
J

Proof:
The L{c) procedure depends on f(z) - cg(z). If f(z) - cg(z) >0
choose F and if f(z) - cg(z) < 0 choose G. The event f(z) - cgz) =0

is assumed to have probability zero under either distribution. Likewise,

A A A A
the L* (c,f,g) procedure will depend on the variable £ (z) - cg_ (z).
n,m m n,m

n,
To show that L;,m(c,%,g) is consistent with L{c) it will be sufficient
to show two things. The first is that f;)m (z) - cgn)m(z)——~g~—+ £(z) -
cg(z) and the second is that |f(z) - cg(z)| can be bounded away from zero
with sufficiently high probability. The first condition assures that
f(z) - cg(z) and gn,m(z) - cgn)m(z) are arbitrarily close to each other
with high probability. The second condition assures that they are both
positive or both negative with high probability. The two together show
that both procedures will make the same decision with high probability.
The above conditions are shown here in reverse order. Fix ¢ >0
and g€ > 0. Consider the random variable ]f(z) - cg(z)l. For i = 1,2,
P, {Jf(z) - cglz)|< q} is the distribution function of this random

variable and is continuous on the right. By assumption

P {If(z) - cglz)]| = O} = 0. Therefore, there exists a ® 3 O such that

P{l£(z) - ce(z)] <oJ€/2  i=1,2.
This is condition two above.

. A
By assumption fn,m

10

P P
(z) —— £(2z) and cgn m(z) ——— cg(z). Therefore,
>



A
£ (z) -cg (2) —E. f(z) - cg(z). That is, there exists an N and M
n,m n,m
such that if n > N and m > M

P{l(gn’m(z) - cgn’mm) - (£(z) - calz)) | > 8/2) < &/2.

This is condition one above.
Combining these two yields
P{L;)m(c,/f\‘,/é) and L(c) yield the same classification of Z¥ 1) &
ifn>Nand m > M.

This ends the discussion of the work of Fix and Hodges for the
moment. Further discussion of their work will be contained in the
density estimation section of this chapter.

Stoller(1954) gives a distribution-free procedure for the
univariate (p=1) two-population case and an estimate of the probability
of correct classification. His approach to the problem is based on a
paper by Hoel and Peterson (1949). He restricts the form of his
procedure which makes it difficult to generalize it to higher dimensions
than p = 1. The procedure is to choose a point A. If z > A classify z
as from F and if z > X classify z as from G. Stoller shows that (1)
the estimate of the probability of correct classification is a consistent
estimate of the optimum probability of classification and (2) the
probability of correct classification induced by this procedure converges
in probability tb the optimum probability of correct classification.

Johns(1960) has also considered the nonparametric discrimination

problem. He uses a somewhat more general decision theory setting than

11



Fix and Hodges do. In their model the loss depends only on the
probability of misclassification. This is a particular case of Johns'
work which has a loss structure that takes into account the relative
severity of misclassifications.

Cooper (1963) demonstrates that the multivariate classification
procedure optimal for the multivariate normal distribution, the
discriminant function, is optimum for broader classes of distributions.
These classes are the multivariate extensions of the Pearson Types 1II
and III distributions. Thus, this paper is not directly concerned with
nonparmetric classification.

2.2 Literature on Nonparamectric Density Estimation

As indicated in the previous section, the problem of estimating
density functions may arise in connection with the nonparametric class-
ification problem. Some other authors who have worked on this problem
were motivated by the univariate problem of estimating the hazard, or
conditional rate of failure, function f(x)/ {l - F(x)'} . Here it is
assumed that F(x) is an absolutely continuous distribution function. The
first part of this section concerns work done by Fix and Hodges (1951)
(1952). They applied this work to nonparametric discrimination.
Consequently, this part of this section will consider both density
estimation and the application to the discrimination problem. It may
be thought of as a continuation of the previous section.

As before, a sample xl,xg,...,xn is to be used to obtain an

estimate of f(x) at z. The idea is to take a small neighborhood of z for

12



each n. If N is the number of x's that are in this neighborhood then
N/n is an estimate of the probability in the neighborhood, and N/n
divided by the measure of this neighborhood should provide an estimate
of f(z). Lemma 2.3 below duc to Fix and Hodges (1951) makes these ideas
explicit.

Let p denote Lebesque measure in p-dimensional space and let

|X - Y| denote the Euclidean distance between X and Y in this same space.

Lémma 2.3 If f(x) is continuous at x = z, and if {Ah}.is a sequence
of sets such that

lim. sup Iz - d| =0
n-eo dEAn

and lim. nu(Ah) = w, and if N is the number of x --,% which lie

17%ps -
in A , then {N/nu(Ah)J-is a consistent estimate for f(z).

There are two main ideas involved in the proof and they are roughly
stated here. First P(Ah) =f(z) u (Ah) and secondly P(Ah)czﬂ/n. One key
point to notice in the above lemma is that the measure of the sets Ah
approaches zero but not as fast as n > =, i.e. u(Ah) -+ O but nu(éh) + oo,
This type of assuwmption will be very important in the construction of
further density estimators which are consistent.

The nonparametric classification procedures based on these estimates
are designated by L*(c,N/np(Ah),M/mu(Jﬂ.m)). By Theorem 2.2 these

procedures are consistent with L(c). These procedures have one drawback.

How should the regions Ah for £ and the corresponding regionSAA.m for g

13



'be chosen? Choosing these regions too large or too small can have
serious consequences on the density estimators. Consequently, Fix and
Hodges have given an alternative approach to this density estimation
problem in order to avoid some of these problems. This approach was
designed specifically for the nonparametric discrimination problem.

It is aimed at estimating two densities at a point z simultanecusly.

Preliminary to discussing the alternative approach it is shown
that the nonparametric classification problem can be reduced from
p dimensions to one. Let p{(x,z) be a metric. Suppose that p(x,z) and
p(y,z) are random variables possessing densities, say fz(x) and gz(y),
which are continuous and not both zero at zero. Setting p(x,y) equal to
p~-dimensional Euclidean distance will work. The two samples XqsXpyor s X
and ¥y, ,¥,s - -,¥, are replaced by p(xl,z) p(xe,z),...,p(xn,z) and
p(yl,z), p(yg,z),...,p(ym,z), respectively. The problem now is to
decide whether fZ(O) or cgz(O) is larger. Hence, it may be assumed
without loss of generality that f and g are densities of non-negative
univariate random variables and that z = 0. This is done for the
remainder of this chapter.

The main idea of Theorem 2.4 due to Fix and Hodges (2951) is to
take an integer k for each n and m and take the k closest points, either
x's or y's, to z. This then is the region Ah and the regiondA.m.
Questions which arise are how should the k's behave and since N+M = k

what effect does this have on the estimates? Theorem 2.4 answers these

questions.

1h



Theorem 2.4 Let X and Y be non-negative. Let f and g be positive and
continuous at 0. Let k(n,m) be a positive integer-valued function such
that k(n,m) + o, (1/n)k(n,m) +~ 0 and (1/m)k(n,m) ~ O, as n and m approach
w. (These limits are restricted so that m/n is bounded away from

0 and «). Define

U= kth smallest value of combined samples of X's and Y's
N = Number of X's < U
M = Number of Y's < U.

Then N/nU is a consistent estimate for f£(0) and M/mU is a consistent
estimate for £(0).

The L*(C,N/nU,M/mU) procedure is then to

choose F if N/n > cM/m
and choose G if N/n < cM/m.
This procedure is consistent with L{c).

The above procedure is seen to have optimum properties as n and m
get large. One question which arises immediately is how do these
procedures behave if n and m are small?

The procedure based upon the linear discriminant function is a

reasonable procedure if (1) F and G are p-variate normal and (2) F and G

have the same covariance matrix. This procedure involves much computation

whereas the procedures proposed above are easy to apply. This brings up
a second question. How much discriminating power is lost if the non-

parametric procedure above is applied when assumptions (1) and (2) are

15



16

valid? Fix and Hodges (1952) attempt to answer this question and the one

in the preceding paragraph simultaneously. They compute the two types of

error for p=1,2 and various values of n (mostly small) and compare these
errors for the two procedures. The nonparametric procedure seems to
compare very favorably.

This ends the review of the work of Fix and Hodges (1951) and
(1952). A discussion of several papers concerned solely with density
estimation follows.

Parzen (1962) has constructed a family of estimators for a density
function f(x). His estimators are based on a sample of n independent
and identically distributed random variables XysXps e Xy with the same
continuity assumptions as stated previously. His estimators are con-
sistent in quadratic mean, (this type of consistency implies ordinary
consistency). They are also asymptotically normal. A review of his
work follows. _

Let Fn(x) be the sample distribution function.

Fn(x) =0 for x < X(1)
(2.1) = r/n for Xy SX <X r=1l,...,n-1
=1 for x > x(n)

where the lower subscript in parantheses indicates an order statistic.

The random variable Fn(x) is a binomial random variable with EFn(x) = F(x)

and var {Fn(x)}— {(l/n )F(x)} {1-F(x)}. One possible estimate for f(z)

which occurs is



(2.2) ?n(z) - {Fn(z+h) - Fn(z-h)} /2n.

Here h is a positive number which must get small as n + ». How fast
should h get small? How should h be chosen? These are qQuestions which
must be answered in studying %n(z).

These questions may appear new but they were encountered earlier.

In fact, the estimator (2.2) is of the type proposed by Fix and Hodges in
Lemma 2.3 for the univariate case. Once h is chosen, for a particular n,
this determines an interval or region Ah about z of diameter 2h.

Fn(z+h) - Fn(z-h) is the number of x's which fall in A, say N, divided
by the total number of x's, n. Thus g;(z) is equal to N/2hn which in
turn is equal to N/nu(ah). This is the Fix and Hodges estimator as
claimed. The problem of choosing h is thus seen to be analogous to the
earlier problem of choosing Ah'

Rewriting ?n(z) in an alternative form will suggest a whole class
of estimators based on the empirical distribution function Fn(x). It
turns out that to study the estimate (2.2) and to try to answer the
above questions concerning h it is just as easy to consider this whole

class of estimators. Let

1/2 Iyl <1,

0 Iyl > 1.

K(y)

(2.3)

Then

o0 n
?n(z) =f(l/h)K({z—y}/n)an(y) = (1/nh) Z K( {z-xj}/h)-
- 3=1

17
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Varying K(y)} will lead to other estimators.

A few of the results obtained by Parzen are now stated. This is not
an exhaustive listing of his results, but a summary of results relevant
to the work of this paper.

K(y) will be restricted to be a weighing function, i.e. K(y) will be

an even function satisfying the following conditions:

(1) sup |K(y)]| < e
-0y <oo

(11) flx(yndy <w

(iii) lim [yK(y)| = ©
y-’oo

(iv) \/PK(y) dy = 1.

The first three of these conditions are necessary for applying a theorem
in Bochner (1955) which is a key theorem needed in the proof of some
of Parzen's results.

Since h depends on n let h = h(n). If

(2.5) lim. h(n) = 0O,
n-reo

A
then (2.2) is asymptotically unbiased (i.e. lim. E fn(z) = f(z)). If
n-+o

in addition to (2.5) the h's satisfy

(2.6) lim. nh(n) = «,
n-rc



~ A
then fn(z) is consistent in quadratic mean (i.e. %;g. E]fn(z) - f(z)]2 = 0).

We note that h(n) approaching zero is equivalent to the interval
about z, Ah’ getting small. In effect, (2.6) says that Ah must not get
small as fast as n + «. This same idea was noted previously in comments
immediately following Lemma 2.3.

Here, then,is a class of estimators all of which are consistent.
These are the type of estimators needed in Theorem 2.2. However, certain
problems in choosing the h's still remain, as conditions (2.5) and (2.6)
allow for wide variation. Parzen (1962) has obtained a theoretical optimum
value of h which is of the corm cn_ 5 where ¢ is a constant and O < & < 1.
Its practical value in applications is somewhat limited however, since
knowledge of the unknown density is necessary in computing the optimum h.
This problem of choosing h's seems to be basic to the density estimation
problem. Intuitively, it seems that perhaps the choice of h should depend
on the sample of n, xl,xe,...,xn, available. This makes a fundamental
change in the estimators as h would then be a random variable rather than
a constant. A close look at the alternative density estimators proposed
by Fix and Hodges in Theorem 2.4 shows that this is exactly what has been
done there. This will also be the case for o density estimator proposed in
the work of this paper.

Rosenblatt (1956) was the original contributor to the nonparametric
density estimation problem. He considered the estimator (2.2) in some

detail. He also indicated how a class of estimators could be generated
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using different weighing functions and discussed them briefly. Parzen's
paper (1962) is a continuation and generalization of Rosenblatt's work.
One interesting fact which Rosenblatt proves is that all nonparametric
density function estimators are biased.

Cacoullos (196Lk) is concerned with estimating a multivariate density.
His paper is a generalization of Parzen's (1962) work with almost all
results being multivariate analogies of Parzcn's results.

Manija (1961) gives the two-dimensional generalization of Rosenblatt's
paper (1956). 1In view of Cacoullos' paper (1964), mentioned above, this
paper need not be considered here.

Some work on estimating density functions has been done using a
somewhat different approach than those already discussed. In particular,
Whittle (1958) and Watson and Leadbetter (1963) have used results from
spectral analysis in constructing density estimators. OSpectral analysis
is concerned with analyzing a stationary time series. It turns out that
it is much easier to work with the spectral density function, which is
the Fourier transform of the autocovariance function of the time series,
than to work with the time series directly. A problem which immediately
arises is the estimation of this spectral density function. BSeveral
papers have been written on this subject, most of them prior to the papers
on the density estimation problem. This estimation problem turns out to
have several similarities with the one being discussed here.

Whittle (1958) follows an approach that he used in an earlier

paper on spectral density estimation. Watson and Leadbetter (1963) use



the techniques of Parzen from an earlier paper on spectral density

estimation. Whittle (1958) considers estimators of the form

n
A
(2.7) B = (1/n)) w ),
=
where wx(y) is chosen to minimize "expected mean square error'. A key

assumption in his work is "that the curve f(x) being estimated is one
of a whole population of curves, and that the population correlation
coefficient of f(x) and f(x+€) tends to unity as € tends to zero".

Watson and Leadbetter (1963) consider estimators of the form
n
2.8) £ (x) = (1/n) ) & (x-x,)
(2. fn(x = (1/n L (x=x, ),
=

with &n assumed square integrable. They use various criteria from the
Parzen paper on spectral density estimation including minimizing the
"mean integrated square error'. Two broad classes are defined in terms
of the behavior of the characteristic function of the distribution. It
is shown that the class of estimators proposed by Parzen (1962) falls
into one of these categories. OSome consistency criteria are defined,
again following Parzen, and the estimates (2.8) are discussed in terms
of these definitions

Discussion of these two papers in greater detail here does not

seem warranted as they are not closely related to the work of this paper.

The papers of Fix and Hodges (1951) and Parzen (1962) are more closely

related. In addition, the discussion of these latter two, in some detail,
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serves as good background material for the density estimation problem, as
it will be treated here. It should be noted that only papers dealing with

nonparametric density estimation have been reviewed. Nothing is said

about parametric density estimation.
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CHAPTER IIIX
THEORY OF COVERAGES

The theory of coverages plays a key role in the development of the
density estimator of this paper. The results needed will be developed
in this chapter. The notation set down in Chapter IIT will continue to
be used throughout the later chapters.

Let xl,xg,...,xn be a sample from a population with an absolutely
continuous distribution function F(x). Let the ordered values be x(l),

X(2)7 2% () i.e. (1) < X(2) < ... < X(n)" The intervals (-o, x(li] s

(x(l)’x(EZ] seeey (x(n), + ©) are called sample blocks and designated by

(n+1) The coverages ¢ of these blocks are defined

(1)
Bl ,...,Bl . l""’cn+l

as F(x(l)), F(x(2)) - F(x(l)),..., 1- F(x(n)), respectively. Since

n+l

}: ci = 1 only the first n coverages are usually considered. The

i=1

subscript on the B's indicates that these blocks are for one-dimensional

(1)
1

following theorem on coverages is easily proved using the theory of the

variables. Note: P(B ) = c, and the c, are random variables. The

Dirichlet distribution and the theory of order statistics (see Wilks (1962)).

Theorem 3.1 The sum of any k of the coverages 01’02""’cn+l has the

beta distribution with parameters k and n-k+1.

The generalization of this theorem in terms of multi-dimensional

coverages is used in some of the proofs of this paper. Multi-dimensional
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coverages are novw introduced and the generalization of Theorem 3.1 is
- given.

Let xl,xe,...,xn be a sample of size n from a p-dimensional distribution.
x; = (xli’XQi""’xpi) for i = 1,2,...,n. An ordering function ¢ is
introduced where w = ¢@(x) is a univariate random variable which has a
continuous distribution function H(w). Consider the new random variables
W sWpy e« esW Where v, = @(xi) for i = 1,2,...,n. Order these w, obtaining
W(l)’w(2)""’w(n)' The coverages are now defined as cl = H(w(l)),
c, = H(W(e)) - H(w(l)),.‘.,cn = H(W(n)) - H(w(n-l))' They correspond
to the p-dimensional sample blocks Bél), Bée),...,Bén+l). The blocks
are the disjoint parts that the p-dimensional space is divided into by

the ordering curves ¢(x) = Vi) for i = 1,2,...,n. As before, ¢, =

P(BIEI)), i=1,2,...,n.

Theorem 3.2 The sum of any k of the p-dimensional coverages Cys SIVEREY

o1 has the beta distribution with parameters k and n-k+1.

Further discussion and proofs may be found in Wilks (1962), Wilks, (1941),
Wald (1943) and Tukey (1947).

An example is now given. It illustrates how this theorem will be

used in this paper. Let p = 2, and consider a sample of n two-dimensional

random variables KypeoosXp Iet z be a point in two-dimensional Euclidean

space. Define ¢(x) as the two-dimensional Euclidean distance between x

and z, i.e. w = ¢(x) = |x-z|. Using ¢ we obtain a new set of ordered

2k



kth ordering curve

FIGURE 1

SAMPLE BLOCKS AND COVERAGES FOR p = 2
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(l) .,Bén+l)'

(1)
2

variables w(l)""’w(n)' These induce the sample blocks B

The distance from z to the X, closest to it is W(l)' Therefore, B
consists of those points inside a circle about z of radius w(l)' This
circle is the ordering curve @(x) = V(1) The distance from z to the X,
that is 2nd closest to z is W(e)- Therefore, Bé2) consists of those
points inside a circle about z of radius w(2) but which are not in

(l) (k) consists of those points which are inside a circle of radius

Vi) about z but which are not in B(l) ég),...,Bék-l) for k = 1,2,...,n

B£n+l) consists of those points outside the circle of radius W(n) about z.

See Figure 1. As previously, c, is equal to P(B(l) i=132,...,n. The

sum of k blocks B<l) oo + Bé k) consists of those points inside a circle
of radius w(k) about z. The sum of corresponding coverages is
cy S R 3 ck. By Theorem 3.2 this sum of coverages has the beta

distribution with parameters k and n-k+1. Analogous results are available
for arbitrary dimension p except that the circles are replaced by
p-dimensional hyperspheres.

The following results concerning the beta distribution should be
recalled as they are used in the sequel. If m has the beta distribution
with parameters k and n-~-k+l then

E(m) = k/(n+1)

(3.1) 2
var (m) = k(n-k+1).(n+1) (n+2).
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CHAPTER IV
A NONPARAMETRIC DENSITY FUNCTION ESTIMATOR

An estimator for a multivariate density function is now proposed.
In one sense, the estimator proposed in Theorem 2.4 by Fix and Hodges
may be considered a special case of this estimator. The two estimators
will be compared. The motivation and development of this estimator is
by different methods than those used by Fix and Hodges. The theory of
coverages contained in Chapter III is used in the proof of the consistency
of this estimator.

Let x PR be a sample of n p-dimensional observations on a

1

random variable X = (X ...,X_). An observation x, is x, = (x..,
P i i 1i

l)Xg)

xpi)' Assume X has an absolutely continuous distribution function,

F(x) = F(xl,x .,xp), with corresponding density function f(x) =

YRR
f(xl,xz,...,xp), which necessarily exists almost everywhere.
ap?"(xl, .. .,Xp)

Bxlaxg...axp

(k.1) f(xl,...,xp) =

An estimate is desired for the density f at a point of continuity,
.,zp), where T is also positive.
4.1 Preliminary Work and Notation

Let hi’ i=1,2,...,p be positive constants.

P{z)-hy S¥ <z) +hp,..zh <X <z gé}

-h ) -

k.2 = F(z +h vee,2  .+h z
( ) ( l) 2 P_l P_l) P P

+h ) -
EERRRTL hp) F(zl +h
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b
- z + .o +h + ... + cee -
F( 1,22 h2, ,zp p) (-1) F(zl 17 »2_~=h )

= ApF(Zl)...,Zp)-
In particular, for the case p=2

A2F<Zl’22) = F(zl+hl’zg+h2) - F<Zl+hl’22-h2) - F(zl-hl,22+h2)

+ F(zl—hl, z2-h2).

Now by definition and the original assumptions

lim. AbF(Zl""’zp)
f(zl,.. z ) = h =0
i 2Ph h,...h
i=1,...,p 12 P
(4.3)
lim. P {zl—hl S X <zt enzh <X <zom}
i=l, cee,D P
2 hlh2"'hp

It is convenient to write (4.3) in an alternative form. For this
the following notation is necessary. Let d(X,2) represent the p-dimen-
sional Euclidean distance function IX-zl. A p-dimensional hypershpere
about z of radius r will be designated by Sr,z’ i.e. Sr,z ={§|d(x,z) < rj}.

The volume or measure of the hypersphere S will be called A . A

T,z ryz 1,z
is equal to 2r np/ // r (p/2).

Briefly

(b.4) a(x,z) = |x-z|

(4.5) Sr,z = {3|d(x%z) < r}'

(4.6) A, , = measure of 8_ == 2r ﬂp/ /’ rﬂ(p/2)
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Both Sr and Ar , appear later with identifying sub-subscripts.

2 J

Using this notation and noting that Ar Z—* 0O if and only if

2

r— 0, f(zl,ze,...,zp) may be written
lim.
(&.7) f(zl,...,zp) = 0 P{XeSr,z}/Ar’z,

i.e. there exists an R such that if r < R then

. - .. €
(4.8) IPﬁ(eSr)Z}Ar’z £(zy, ,zp| <€,
for arbitrary & > 0.

4.2 A Nonparametric Density Function Estimator

This section will include a general discussion which will serve as
the motivation for writing down a density estimator ?Q(z). In the
following section the consistency of this estimator will be shown.

According to (4.8), P{¥€Sr,?}/hﬂgz can be made as near f(zl,...,zp)
as one chooses by letting r approach zero. P“{XESr,ék is unknown since
it depends on the density f which is being estimated. Therefore, if a
good estimate of P gfesr);} can be found, it can be substituted in the
expression P'{Fesr,;}/%r,z and this should be a good cstimate of the
density f at z. This is the approach which will be used here.

In the example given in the chapter on coverages it was seenl that the

sum of k blocks Bél) + Bég) + ...+ Bék) was a p-dimensional hypersphere
Srk’ where rk = w(k), and W(k) is as defined in the example of Chapter

III. If the hypersphere Sr 2 in the preceding paragraph is replaced by

J
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T, ,2
k’
coverages. Theorem 3.2 on coverages gives the distribution of this sum

S , a sum of blocks, then P.{x€sr ;k is the sum of the corresponding
-2

of coverages. If this sum of coverages converges in probability to its
expectation, then it can be approximated by this expectation. This is
basically the idea used here to obtain a density estimator.
More specifically, let.{k(n)}'be a sequence of integers (this can
be generalized to more general.k(n) with minor difficulty) such that
lim. k{n) = o

n->eo

(4.9)

lim. k(n)/n = 0.

n+wo
From now on, k(n) is set equal to k unless something to the contrary
is stated, i.e. k(n) = k.

Let the ordering function be @(x) = w = |x-z|. The ordered
variables are w(l), W(e),--.,W(n), corresponding to the set of p-
dimensional x's, xl,...,xn. According to the example of Chapter III,
the ordering curves @(x) = W(i), i=l,...,n, are surfaces of p-dimensional
hyperspheres of radius w(i), i=l,...,n, about z. The corresponding blocks
are B(l),...,B£n+l) and the coverages are Cy5 02,...,cn. Consider the

P
sum of k of these blocks, B(l) L Bék). This sum is a p-dimensional

hypersphere Sr where Ty = W(k). Let Uk equal the corresponding sum of

x’?
cove es C + ... +C, .
overag 1 K



(4.10) U =cp+ ..ot = P{Xesrk’z}.

By Theorem 3.2, Uk has the beta distribution with parameters k and n-k+1.
Therefore, using (3.1) it is easily shown that U, minus (k-1)/n converges
in probability to zero, i.e. U - (x-1/n —£ 0. Thus (k-1)/n is an

approximation for Uk = P‘{fesr {)_. This leads to the proposed estimator
k)

{ (x-1)/n} {l/Ark’z}
{(k-l)/n} {pF (p/2)/2rinp/2}.

The reason for using (k-1)/n rather than k/(n+l) is discussed in Chapter

?n(Z)

(k.11)

VI. Theorem 4.1, below, supplies the details of the preceding discussion.

~n
4.3 Consistency of the Nonparametric Density Estimator fn(z)

Lemma 4.1 If c, = an/bn———z——* ¢ #0 and a, N 1, then bn —rF . 1/c.
Proof':
P P P
a —— 1 and ¢ —> ¢ # 0. Therefore, a_fc_=1b —— 1/c.
n n n’ n n

This elementary lemma is used in a key step of the proof of Theorem 4.1

below; thus it is convenient to have it explicitly set down here.
s
Theorem 4.1 The density estimator fn(z) as given in (4.11) is consistent.

Proof:
The first step in this proof is to show that f(zl,...,zn) can be

approximated by P }XeS A . This is done by showing that
I sZ Ty ,2
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P
P {Xesrk,;s/Ark,z——> £(zy,--2).

P{XeSr ZW} = U, has the beta distribution with parameters k and
k)

n-k+l. This can be used to show that Uy £ 0. By (3.1)

EU, = k/(n+1)

(4.12)
var {Uk} = k(n-k+1)/(n+1 )2(n+2).

Using the Tchebysheff inequality and for arbitrary €> 0
P {IUk - k/(n+d)|> E} < var (Uk)/ﬁ2

= k(n-k+1)/(n+1)P (n+2) &2,
Using the conditions (4.9), the right hand side is seen to converge to
zero. Thus, for large n, the right hand side can be made arbitrarily
small. That is, U - k/(n+l1) £ L. Using (4.9) again gives

k/(n+l) ——— 0. Combining these two results gives
(4.13) u =P {XeSrk’ 5 — o.

However, this can happen only if the measure of S s viz. A »
T ,Z r ,Z
k k
converges in probability to zero, by the continuity assumptions. This,

in turn, can occur if and only if rk—P—-» 0.

Let R be as defined in (4.8). Since rk-—P—+ 0, there exists an N

such that if n > N, and for arbitrary{\ >0

(b.14) PEK < R})l -4\ -



Using (4.8) and (4.14) the following statement can be made. If n > N

P UP {Xesrk,%/Ark,z - 2(zy,00002 )] <.5} >1-1\»

i.e.
P
(4.15) P i.xesrk,Z}/Ark,z — f(zl,...,zp).

This concludes the first part of the proof.

The concluding portion of the proof goes as follows. By (%.15)

U /A £ f(zl,...,zp) or, rewriting this,

(4.16) {n/(x-1)3 Uk/{n/(k-l)}Ar ,—— t (295 -0052))-
k)

If it can be shown that the numerator of (k.16), viz. {n/(k-l) }Uk,
converges in probability to 1, then it will follow that the denominator,

viz. {_n/(k—l)}Ar ,» Will converge in probability to 1/f(zl,...,z ).
k’ b

This is so because of Lemma 4.1, when the following associations are

made: a_ =§1/(k-l)} U b ={n/(k-l)}Ark’z, c =a/o andc =

f(zl,...,zp). But the above statement is equivalent to

(4.17) {(k-l)/n} .[1/Ar]’,;3 P, 22y, s2)-
This is the desired conclusion of the theorem. It remains to show that
§o/0e1) Ju, —E— 1.

Consider {n/(k-l )}Uk.
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E[{n/(k-l)}uk J = {n/ (-1} {1/ (e42)
var [{n/(x-1)} uk] - {n%/(x-1)%} {k(n-k+l)/(n+l)2(n+2)_}.

The variance in (4.18) approaches zero by (4.9). Using the Tchebysheff

(4.18)

inequality and for arbitrary € > O

p[ 1fo/(-1)3 0, ~ {0/ G2} {i/(ms1) F | 2 €< ver /0103 v, |76
(%.19)

= {0%/0-1)%} {ic(a-w01)/ (o1 )P (me2)} {1/€
Thus, {n/(k-l)} u, - {_nk/(k-l)(ml)}-—P——» 0. Also, nk/(k-1)(n+l 1.

Combining these two results gives

(%.20) {p/(-1)} U, £ 3.

Thus, (4.17) follows from the argument above and the theorem is proved.

Written out in detail, (4.17) looks as follows:
2 P
1.21)  {(e-1)/ip{p(p/2)/2R R B (s, o).

k.4 How Some Basic Probelms Were Solved for %n(z)

Barlier, the problem of choosing neighborhoods (or equivalently
h's) was mentioned. In particular, it was mentioned in the discussion
following Lemma 2.3 and in the paragraph following (2.5) and (2.6) in
the review of Parzen's (1962) paper. There, it was pointed out that
in order to have a consistent density estimator it was necessary for
the h's to get small as n increases but not as fast as n increases.

These conditions are made explicit by (2.5) and (2.6) in the review of

3k



Parzen's (1962) paper. It secms necessary to point out that these
requirements are satisfied in the estimator of Theorem 4.1 and why
they are required for the consistency of this estimator.

The conditions which are equivalent to (2.5) and (2.6) are (4.9).
The first condition of (4.9) requires that the sequence of constants
get large as n + «» and the second requires that this sequence be
of lower order of infinity than n. These conditions are used in the

discussion immediately following (4.13). There it is seen that Uk

approaching zero implies the same thing for Rr which, in turn, implies
k

the same thing for r Thus, r, can be thought of as h(n) and if U

k' k k

does not get small as fast as n + » then neither does T - By (4.12)

U, is of order k/(n+1) and hence converges to zero, but not as fast as

n + «, since k also approaches . Thus, r, also gets small, but not

k
as fast as n + «.

So far, it has been pointed out that the conditions (4.9) are
equivalent in some sense to (2.5) and (2.6). It remains to show that
they were necessary conditions in the proof of the theorem. This is
done simply by pointing out where they were used. The second of the
conditions (4.9) was used immediately preceding (4.13) in order to arrive
at (4.13). The first of the conditions (4.9) was used in the application

of the Tchebysheff inequality immediately following (4.18). It has the

effect of making the variance in (4.18) go to zero as n - .



It may appear that the estimator %n(z) could have been simplified
by fixing k at some constant value for all n. However, this is now ruled
out by the above discussion since ?n(z) would then not be a consistent
estimator.

4.5 The Univariate Case and a Comparison of It with Theorem 2.4

In this section, the discussion will be restricted to the case
where X is a univariate random variable with X > 0, £(0) > 0 and f is
continuous on [b,m). These are the conditions used in Theorem 2.4 and
are interesting in view of the discussion in the second paragraph
preceding Theorem 2.4. An estimate of f(0) is desired. The special-
ization of (4.11) to this case is given. The estimators of Theorem 2.4
are discussed and briefly compared to the specialization of (4.11) given
here.

By definition, £(0) is
(4.22) £(0) = 1P (F(n) - F(0))/h = T 'F(n)/h.

h-+0 h-0
This statement is equivalent to (h.?) in the general case. In this case,
h is the length of the interval [b,h). There is not a central interval
about the point zero as X > 0. The general density estimator is based
on a central interval about O of length 2h. Thus, some slight modifi-
cations must be made in the general density estimator to handle this
case. The reason for these modifications being that if f is defined as

O for X < 0, then X = O is a point of discontinuity of f. However, f
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is assumed continuous on the interval [?, ). The development is
sketched here, the verification being almost 1dentical to the proof of
Theorem 4.1.

The observations x(l),...,x(n) are already ordered as to distance
from z = O since X > 0 and X is univariate. Therefore, the ordering

function d(x,z) is not necessary here. Consider the blocks B(l) =

1
[O,x(l)], B](_z) = (x(l),x(z)],...,B:En

to these blocks are coverages c, = F(x(l)), c, = F(X(E)) - F(x(l)),...,

+1) = (x(n), ). Corresponding

C o4l = F(x(n)). Now

Uk=c1+ ...+ck
= Fle(y))
and BJ(_l) + ...+ B:ik) = E),x(k)].

The measure of this last sum of blocks is x(k). Uk has the same

distribution as it had in previous work. Therefore, the procedure now
M

is the same as that in devloping fn(z) in the general case. This leads

to

(4.23) T (0) = {(k-1)/n} /20y 3 -

In Theorem 2.4, Fix and Hodges have two nonnegative univariate
random variables X and Y, respectively, Assuming f(0) > O and g(0) > 0
the problem considered there is estimating £(0) and g(0) simultaneously

from samples x -.,xn from £ and yl,...,ym from g. Their procedure

1
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is to choose a sequence of integers k(n,m), such that k(n,m) + e,

(1/n)k(n,m) + 0 and (1/m)k(n,m) > O as m and n + «, and to define
th

U = k = smallest value of combined samples of X's and Y's
N = Number of X's < U
M = Number of Y¥'s < U.

Note: M+ N = k(n,m) = k.

Then
(4.24) 'f(o) = N/nU and 2(0) = M/mU.

No use of the theory of coverages was made in this development.
There is some similarity between (4.23) and (4.24). They both

make use of the observations in determining h. In the first case, h
is X(k) and in the second case, it is U. This is in contrast to work
such as that in Parzen (1962) and Watson and Leadbetter (1963) where h
is a constant that depends on n but not on xl,...,xn. The estimators
(4.24) are available only for the specialized case considered in this
section. This is very restrictive as far as density estimation in
cases other than the classification problem is concerned. On the other
hard, the estimator (4.11) is available for any multivariate density
satisfying the continuity assumptions previously set down.

N ~
k.6 Efn(z) and var fn(z) for the Uniform Distribution in One Case

Let X be a random variable uniformly distributed on the interval

[0, 1}. Then
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£x) =1 x €[0,1]
(k.25)
=0 otherwise.
Let z = 0. Consider the estimator of £(0), %n(O). This is a particular

case of (4.23), i.e.
N
£ (0) = {(x-1)/n%} {1/x(k )y
A A
In this section, Efn(O) and var fn(O) are examined and the behavior of

A
fn(O) is studied for this spccial case.

The distribution function for x is

F(x) =0 x <0
(4.26) = X 0<x<1
=1 x > 1.

Using (4.26), the distribution of the k™ order statistic can be
written down. See Sarhan and Greenburg (1962) or use the results of

Chapter III.

4.27) ax,, = _n: (x, O e, ) Fax,
( YO B ) = T ) k) (k)

Therefore, 1

n! k-2 n-k
5 [/x )] =Of ey ce IO U (O UIE(

(.28) ™ (k-1) [ (n+1-k) . n!
™ (n) (x-1)(n-k)!

n/(k-1).



Likewise, 1

2 : - N
o[/ )] = T ) e
o)

(4.29) = l:n(n-l )]/ [(k-l)(k-2 )] .

Using (4.28) and (4.29)

E?n(o) = {(k-l)/n}E{l/x(k)}
(4+.30) =1
= £(0),
?0) = {(x-1)°n"Y E {l/x%k)}
(4.31) = {(k-l )/n¥ {(n-1)/(x-2)%
and var 'f\n(o) - E£2(0) - {=£ (0)} 2
(4.32) = {x-1)/¥ f{n-1)/(x-2)¥ - 2
_ n-k+l
" n(k-2)

Using the conditions (4.9), the following results are immediate
A
Efn(s) =1
(4.33) var fn(O) + 0
A
£ (0) —— 1= £(0).
This is exactly as qQuaranteed by Theorem 4.1. For this special case,

if the factor k/(n+l) had been used rather than (k-1)/n in defining

A A
fn(O), then fn(O) would have been biased upward. This is the first



A
indication that using the factor (k-1)/n in defining fn(z) will lead to
a better estimator than using k/(n+l) will. The asymptotic results are

the same in either case.
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CHAPTER V
NONPARAMETRIC CIASSIFICATION
A nonparametric classification procedurc is introduced in this
chapter. It will be based on the density estimators developed in the
preceding chapter and on Theorem 2.2. Invariance properties of the
procedure will be discussed. Special cases will be considered and some
comparison with the procedurc given by Fix and Hodges based on Theorem
2.4 will ve given.
5.1 A Nonparametric Classification Procedure
Let f and g be two density functions corresponding to absolutely
continuous distribution functions F and G, respectively. F and G are
unknown. Let z be a p-variate observation which is to be classified as
belonging to F or to G. Samples xl,...,xn and yl,...,ym are given from
F and G respectively. Consistent estimates for the densities f and g at

A A
z, fn(z) and gm(z), are given by Theorem 4.1. Let kl(n) =k, and

kg(m) = k2 be sequences of integers such that
1lim. kl = 1im. k2 =
n-eo n-eo
(5.1)
lim. k. /n = 0 lim. k,/m = O.
1 2
n-co Moo

Essentially what (5.1) says is choose k, and k, large but small

compared to n and m respectively.

Let rk and rk be defined analogously to the way in which rk was
1 2

defined in section L.2 of Chapter IV, (rk is defined using the x's and
1

4o




r, is defined using the y's). Likewise, define AL AL

P
2 kl k2

»
2

S and S as R and S were defined in section 4.2 of Chapter IV.
r. ,z T ,Z r ,2Z r ,z

kl’ ke, k’ k)
Then
T (2) = §0o-0)my {ua, %
kl’
= {(kl—l)/n} {pr‘ (p/2 )/EI‘ilnp/z} .
(5.2) and

o>

~
N

o
il

. {(1{-2-1)/111} {1/Ark2’ z}

{(k2'=l )/m& {p r (1)/2/21'£2 ﬁp/E}

N
It should be noted that even if kl and k2 are equal the r in fn and the
A
r in gm are not in general equal. The notation will not be further
complicated, at this time, in order to distinguish the r's. The

classification procedure is then as follows:

choose F if @h(z)

(z) > ¢
(5.3) :

A
/&,

A
/ g, z) < c.

A

choose G if fn(z)

. . A A .
This procedure will henceforth be designated by L(c,fn,gm). The choice
of ¢ depends on the relative importance of the two types of errors:
classifying z as being from G when it is from F and vice-versa. For
example, if c is chosen so that the probabilities of these two types of
errors are equal the procedure is called a minimax procedure. The choice

of ¢ is not considered here but it is assumed to be given.
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According to Theorem 2.2 and Theorem 4.1, L(c,%n,gﬁ) is consistent
with L(c). Since L(c) is optimum with respect to minimizing the prob-
abilities of theerrors of misclassification, L(c,?n,%m) will share these
optimum properties as m and n get large. Thus, (5.3) provides a
nonparametric classification procedure that has asymptotically optimum
properties. It is not restricted to the one-dimensional situation or to

any special cases.

If k, = lork, = 1, the procedure (5.3) does not depend on the

observations. Therefore, if kl =1 or k2 =1 it 1s convenient to alter
(5.3) slightly by changing the density estimators (5.2). The following
change, which will be made, does not affect the asymptotic properties of
the estimators (5.2). Thus, it does not affect the asymptotic properties
of (5.3) either. If k; =1or k, = 1 the factors (kl—l)/n and (k2-l)/m
will be changed to kl/(n+l) = 1/(n+1) and k2/(m+l) = 1/(m+1), respectively.

These changes are assumed in effect for the following work.

5.2 ©Special Cases and a Comparison with the Fix and Hodges Procedure

(5.3) can be written in the following alternative form.

rP
(k,-1)m k
1 —2.>c
Choose.F if (k_.-1)n )
2 rk
1
b
(5.)4') and (k -l)m I‘k
1 2
< c.

choose G if (k2-1)n )

o

=

L




Suppose that m = n. It seems reasonable then to choose kl = k2 = k.

Let 1T and of designate an r coming from samples from F and G

A A
respectively. The L(c, fn,gm) is as follows:

. 1Y b
choose F if oy / 1T > ©
(5.5)
. b 19
choose G if STy / 1T < ©

In order to compare this procedure with that based on Theorem 2.k,
X and Y are assumed to be univariate nonnegative random variables. Also,
z is taken to be zero and f(C) and g(0) are assumed to be greater than
zero. In view of the discussion that leads to (4.23), (5.4) can be
simplified to the following:
(kl-l)m . y(ka)

(ke—l)n x(kl) >c

choose F if

(5-6) y
(kl-l)m. (k2)

<c.
(ke—l)n X(kl)

choose G if

Under the further assumptions that m = n and that k, = k, = k, (5.6) can

be simplified to the following:

choose F if y(k)/x(k) > c

(5.7)
choose G if y(k)/x(k) <ec

The procedure based on Theorem 2.4 is L¥(c,N/nU,M/mU). It is as

follows:

k5



choose F if N/n > c(M/m)

(5.8)
choose G if N/n < c(M/m).

N and M are as defined in Theorem 2.4. If n = m, (5.8) reduces- to the
following:

choose F if N>cM

(5.9)
choose G if N < cM.

For the moment, let ¢ = 1. Then (5.7) says to choose F if the kth

ordered x, x(k), is less than the kth ordered Yy, , and choose G

()
otherwise. (5.9) says choose F if out of the k(n,m) = N + M x's and

y's nearest zero there are more x's than y's and choose G otherwise. If
the further restrictions k = 1 and k(n,m) = 1 are made, then both
procedures are equivalent. Iach procedure consists of classifying F

if the closest observation to zero is an x and vice versa.

Fix and Hodges (1952) have considered this latter procedure for
small values of n and have compared it td the procedure based upon the
discriminant function under assumptions necessary for this latter
procedure. It compares very favorably. Hence, the classification

procedure of this chapter will also compare favorably to the diseriminant

function procedure in this last case.

A
5.3 1Invariance Properties of L(c,?n,g )

m
A A
The classification procedure L(c,fn,gm) has certain invariance

A A
properties that are examined in this section. ©Since L(c,fn,gm) depends
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A A
on the samples x ..,xn and yl,...,ym only through fn and gm it follows

1’

A A A A
that whenever fn and g are invariant then L(c,fn,gm) is also.

A
Consequently, the invariance properties of fn(z) are considered first.
It is reasonable to require that certain transformations of the

A
n p-dimensional observations xl,x ...,xn and z will leave fn(z)

2)

unchanged. Assume x REFEN and z are 1 x p vectors. Iet bbea lxop

l)

vector of constants, i.e. b = (bl,...,bp). Consider the linear trans-

Jation z + b, x, + b,...,xn + b. This translation has the effect of

1

moving the whole density to a new location. Hence, the estimate of the
density at the translated z point skould be the same as that at the

A Ax
original point z. That is, fn(z) should be the same as fn(z +b),

where the ¥ on f indicates that the estimate is based on the translated

variables xl + b,...,xn + b. This then is the first invariance property

A
that fn(z) should have.

Secondly, let rﬂ be a p X p orthogonal matrix. Consider the trans-
formation z rﬂ ’ Xq rﬂ PRERTE f“ . This is a rotation and since it does

not change the relative positions of the points x --,xn and z it

1’

should satisfy the same criterion that the translation did, namely
A A *
that fn(z) and fn(z r ) are equal.
PN
Looking at (k.11) it is seen that fn(z) depends on the sample

Xy5+++,% and z only through r,. But, r, is d(x,z) for some

10"
X, i=l,...,n. Therefore, it is only necessary to look at da(x,z) in

N
order to study the behavior of fn(z) under the transformations discussed

b
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A
above. If d(x,z) is invariant, so is fn(z). But, d(x,z) may be

written as follows:
(5.10) a(x,z) = V(x-z)(x-z)'.

*
Consider the translation by the vector b and let d (x,z) designate the

distance between the two translated variables. Then

a(x,z) = v(x-z)(x-z)"

N (x+b-(z+b ) ){x+b-(2z+b) )’

d*(x,z).

A
Thus, fn(z) is invariant under translations, since d(x,z) is.

Let r be an orthogonal matrix of dimension p x p. Then

a(x,z) = V(x-2)(x-2)"

= V(x-2) ™ r“'(x'z)'

\[(xr‘ 22 )
a(x r1 ,2 r1 )

a4 (x,2)

(5.12)

A
Thus fn(z) is seen to be invariant under an orthogonal transformation.
N A
Since fn and g, are invariant under a translation or orthogonal

N A . . .
transformation then L(c,fn,gm) is also invariant under these trans-

formations.




Now let c be a scalar. Transform xl,...,xn, Yys-eoa¥py and z to

CXyyeresCX CYys e -aCY and cz. First, examine the result of this

transformation on d(x,z) as above.

N(x-z ){(x-2 )"
(1/c) J(cx-cz)(cx-cz)'

a(x,z)

(5.13)

(1/c )d*(x, z).

A A
Thus Q;Kz) is transformed to (l/c)fn(z) and gm(z) is transformed to
A
(l/c)gm (z) since @n and %m depend on 1/d(x,z). Since L(c,fn,ém) depends
AN
only on the ratio fn/gm it is invariant under this scale transformation.

Then 1/c in the numerator and denominator of the ratio cancel out. This

concludes the discussion of the invariance properties of the classification

A A
procedure L(c,fn,gm).
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CHAPTER VI

N
AN EMPIRICAL STUDY OF fn(z)

When actually using the estimator fn(z) proposed in this paper,
several questions arise.
i) Since %n(z) N f(z), how large should n be for %n(z) to be
very near f(z)?
ii) How should one choose the constant k used in the estimator
N
fn(z)?

iii) How does this estimator compare with other estimators? In
particular, how does it compare with an estimator obtained by
assuming a particular parametric form for the density function
f and then using maximum likelihood estimation to obtain
estimates for the unknown parameters in the density function?

In order to illuminate some of these questions, a small empirical
study was carried out on an IBM 1620 computer. Three specific
distributions (the uniform, the exponential and the normal) were
treated in this study. The purpose was not to find concrete answers
to the above questions, but to try to obtain some feeling for the
behavior of the estimator ?h(z) and at the same time perhaps get some
indication of what the answers to the above gquestions might be. The
exact study carried out, the results, etc. will be presented in the

following sections.

6.1 Generation of Random Variables from Uniform, Exponential

and Normal Distributions



Much of the work in this empirical study involved generating random
samples from the above three distributions. The techniques used are
briefly discussed here.

The three density functions involved are:

i) Uniform

f(x) =1 0<x<1
=0 otherwise;

ii) Exponential

£(x; B) = (1/8)e /) (B> 00 <x < w)

=0 othervwise;
iii) Normal
2
f(X;u,Ue) = —Tlﬂr exp {—‘]2; ‘(i:g'e)—' -0 <X< o
(2nc”) o
-0 <P oo
0 < a°,

There is a random generator subroutine built into the IBM
1620 Fortran programming system. This subroutine generates numbers
uniformly on the interval (0,1) and this subroutine was used to generate
random numbers from the uniform distribution.

A sample x <X, from the exponential distribution was generated

1’

by using the probability integral transformation. First, a sample

Uyyeeeou Was generated from the uniform distribution using the

lJ

subroutine described above. Set U = F(x; B) where F is the distribution

function for the exponential distribution, i.e. U = l-e-x/B. Then
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x = -Bln(1-U) is distributed as an exponential variate, hence
X, ='-5ln(l-ul), X, = -Bln(l—u2),...,xn = -Bln(l-un) is a sample
of n from the exponential distribution.

In the normal case, it is not possible to use the technigue
described in the preceding paragraph as the distribution function F for
the normal distribution does not have a closed form as the exponential
distribution function does. That is, F(x; u,02) for the normal
distribution involves an integral which can only be evaluated
numerically. A search for some alternative method of generating random
normal variables led to a method proposed by Box and Muller (1958)
which will be described below. Muller(1959) indicates that this is a
satisfactory procedure.

The Box and Muller technique of generating normal random variables

again makes use of the uniform random number generator subroutine. Let

Ul’ U2 be independent random variables from the same uniform density

function on the interval (é,i] . Let

bl
|

= (-anUl)l/2 cos 2nU,,

1
/2 .
X, = (-anUl) sin 2nU,-
Then (xl,x2) will be a pair of independent random variables from a normal

distribution with mean zero, and variance one. These two normal variables
can now be transformed to two other normal variables having any desired
mean and variance. Proceeding in this manner, we can generate a random

sample of any desired size.



6.2 Maximum Likelihood Estimates for Normal and Exponential Distributions
The maximum likelihood cstimate of the parameter B in the exponential

A

distribution, based on a sample x ..,xn from this distribution is B =

1’

X. The maximum likelihood estimates of the parameters {4 and 02 in the

normal distribution, based on a sample of x ,...,xn from this distribu-
1

Ao A2 2
tion are By =X and Gn = 8 respectively, where

n
-2
2 z (xi'x)
S =
i=1

n
~ P
By well known properties of maximum likelihood estimators, 5n — B,

N P Nz P 2 N\ P A A2 P
My =™ W, 0, —> 0, £(x; 5n) —— f(x; PBJand f(x;un,cn) _—

2
f(X;'u,-U ).

6.3 Description of the Empirical Study and the Results

The results of this empirical study has a significant effect on
earlier chapters of this paper and that effect is now pointed out prior
to discussing the empirical study. In this empirical study, the estimator
gn(z) as given in (4.11) was not used. Instead, an estimator using the
factor k/(n+l) rather than (k-1)/n was used. Using this estimator for
f led to estimates which were biased upward a large rercentage of the
time. This will readily be seen when the results are presented later
in this section. As a result of this, a search was started for an

estimator which would not have this strong tendency to be biased upward.

In the last section of Chapter IV a special case was considered and
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there it was observed that using the factor (k-1)/n instead of k/(n+l1)
led to an unbiased estimator at a certain point. Thus, the estimates
obtained in this study was converted to new estimates based on the
estimator (4.11) rather than that originally used. It was observed that
approximately one-half of all estimates obtained in this study were now
lower than their theoretical value and approximately one-half were now
higher. This seemed to be sufficient evidence to recommend using (4.11)
rather than some other asymptotically equivalent estimator for f, such
as the one described above.

The empirical study made use of the results in the previous
sections of this chapter and of the work on the proposed estimator %n(z)
in Chapter IV. A description of the empirical study undertaken will be
presented first and it will be divided into three parts as will the
presentation of the results. The three parts will consist of 1) the
uniform distribution case, 2) the exponential distribution case and 3)
the normal distribution case.

No attempt was made in the uniform distribution case to compare the
estimator of this paper with the maximum likelihood estimator. Table 1
of the Appendix contains the various problems considered. This table will
be explained in some detail, as Tables III, V, VII, and IX are very
similar. Consider problem U-3 in Table I. A sample of 25 vas
generated from the uniform distribution and estimates of f(x) were
calculated at the points z = .05, .25, .50, .75 and .95 using ?;(z) with

A A A N
k = 3, i.e. ?;5(.05), f25(.25), f25(.50), f25(.75) and f25(.95) were
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calculated. The estimator ?g(z) is as described in the first paragraph
of this section, rather than (4.11), and this is also true for the normal
and exponential cases considered in the following two paragraphs. This
procedure was repeated ten times giving ten different estimates of f(x)
at each of the five z points. The means at each of these points,
';‘25(.05), ’;’25(.25), %‘25(.50), f-“gs(.75) and ’1325(.95), were calculated as
well as the sample variances of each of these means. These sample
variances will be designated by ;;} ?;(z). In all cases k is chosen

near nl/e. For the cases whecre the number of observations per sample

is 25 and 100, k is varied slightly above and slightly below nl/2 as well
(e.g. when the number of observations per sample is 25, 3 values of X,

3, 5, and T, are used). The results of the problems in Table I are given
in Table II. Problem numbers in Table II correspond to those in Table I.
Any time the same problem was run with 10 samples and also with 50
samples, these results appear side by side. This occurs in almost all

cases as can be seen by looking at Table I. The same procedure will be

followed in Tables IV, VI, VIII and X. Table II is self-explanatory when

used with Table I. For convenience, the theoretical values of the density

at each point where it was estimated are listed here. They are £(.05) =
£(.25) = £(.50) = £(.75) = £(.95) = 1.

The exponential case was considered next. Froblems were run with
the parameter B in the exponential distributions equal to .5 and 2.0.

N\
Using the nonparametric estimator fn(z), essentially the same type of

25



problems were run as in the uniform case for both B8 = .5 and B = 2.0. The
problems are given in Table III, which reads the same as Table I. Next,
maximum likelihood estimation was considered. All of the problems run
corresponded to similar situations in the nonparametric case, and they
are listed in Table V. Consider problem number E2-3 in Table V. A
sample of 25 generated from an exponential distribution with B = .5.

i, the maximum likelihood estimate of B, was calculated. X was sub-
stituted in the exponential density function for B and estimates of

f(x) at z = .25, 250, 1.0 and 2.0 were calculated. This was repeated
ten times, giving ten estimates of f(x) at these four z points. The
mean of these estimates at each of the points, designated by ?(z), was
calculated as well as the sample variance of each of these means,

Gor é(z). The results of problem number E2-3 are comparable to those of
El-3, E1-5, and E1-7 in the nonparametric case. The results of the
problems listed in Tables III and V are given in Tables IV and VI,
respectively. The theoretical values of f(x) at the points where it was

.5, £(.25) = 1.21306, £(.50) = .73576, £(1.00) =

]

estimated are B

]

.27067, £(2.00) = .03663; B = 2.0, £(.25) = .44125, £(.50) = .389%0,
£(1.00) = .30327, £(2.00) = .18394. These values as well as those for
the normal distribution given below are also given on the first page of

the appendix for convenience.

The normal distribution was the last case considered. Only problems

for the normal distribution with mean zero and variance one were
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considered. The problems run for the nonparametric estimator for the
normal distribution are very similar to thoée run for the uniform and
exponential distributions and are given in Table VII. The problems run
for the maximum likelihood case correspond to the nonparametric problems

the same as in the exponential case. The maximum likelihood procedure

here is axactly as in the exponential case except that x and se, the mean

and sample variance, are substituted in the normal density function each
time for p and 02 rather than x for B. The estimator 52 is not the
precise maximum likelihood estimator but is unbiased. The problems run
are listed in Table IX and the results of problems in Tables VII and

IX are given in Tables VIII and X. The values of f(x) at the points
where it was estimated are:f(-2.5) = £(2.5) = .01753, £(1.0) = £(1.0) =

.24197 and £(0) = .3989.4.

6.4 General Remarks on the Empirical Study

As was pointed out earlier, it is readily seen that a fairly large
proportion of the estimates as originally obtained in the empirical
study were high. It was not surprising that the estimator originally
usually was biased in view of the statement proved by Rosenblatt (1956).
He proved that any nonparametric density function estimator is biased.
However, the nonparametric density estimator (4.11) seems to have less
bias than the one used in this empirical study.

The value of k was chosen near nl/z. It was varied slightly in a

1/2

few cases. In these cases it appears that k = n or k M nl/2 gave
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bettar results than k < nl/g. The evidence is not too strong, especially
since few cases were considered. The choice of an optimum k is a point
which would be worth investigating.

As the number of obscrvations per sample increases, the trend is
for the various nonparametric estimates of f(x) to improve. This is
expected in view of the asymptotic properties of the estimate used. No
definite conclusioh can be drawn concerning how large n should be for
the estimate to reach a certain accuracy. This point appears worthy of

further investigation.

A few comparisons of the estimates obtained by using the nonpara-
metric estimator and those obtained by using maximum likelihood estima-
tion shows that the maximum likelihood procedure appears to be substan-
tially better. This is true even if the nonparametric estimates
obtained in this study are converted to the estimates of (k.11). This
is not at all surprising because of the large amount of additional
information assumed in the maximum likelihood case. However, in those
situations where it appears that there is simply not enough evidence to

A
warrant any parametric assumptions, fn(x) is a reasonable estimator to

use.




CHAPTER VII
SUMMARY

The first part of Chapter II was a review of work done in the area
of nonparametric classification. It was pointed out that the nonpara--
metric classification problem can be closely related to the problem of
nonparametric density estimation. As a result of this, a major portion
of the work in this report was concerned with nonparametric density
estimation.

In Chapter IV, a nonparametric density function estimator was

introduced. It was shown that it was basically quite different than

most other nonparametric density estomators appearing in the literature.

The main result of this chapter is contained in Theorem 4.1, which shows

A
the consistency of the nonparametric density estimator fn(z). The

similarities between this estimator and one introduced by Fix and Hodges

(1951) are discussed for a special case. The expected value and variance

of ?n(z), for a special case, are also found.

A nonparametric classification procedure based on ?n(z), as
introduced in Chapter IV, is given in Chapter V. This procedure is
shown to have certain optimum properties asymptotically. A brief
comparison of the similarities between this procedure and one
introduced by Fix and Hodges (1951) is made for a special case.
Invariance properties of this classification procedure are discussed
briefly.

An empirical study was made on the nonparametric estimator

A N
fn(z). It provided some feeling for the behavior of fn(z) for finite
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sample size. This study also led to a density estimator which appears
to be less biased than one that had been considered earlier.

Several questions concerning %n(z) which are as yet unanswered
were mentioned in the last section of Chapter VI. Similar questions
can be asked concerning the nonparametric classification procedure given
in Chapter V. TFor example, what is the behavior of this classification
procedure for finite n? Several of these questions are also worthy

of further investigation.
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For convenience in reading the tables on the following pages
of this appendix the theoretical values are given here for all points

where a density was estimated.

Uniform Distribution

£(.05) = £(.25) = £(.50) = £(.75) = £(.95) = 1

Exponential Distribution

i) B=5 f£( .25) = 1.21306 £( .50) = .73576
£(1.00) = .27067 £(2.00) = .03663
ii) p=2.0 f£( .25) = .4h125 £( .50) = .38940
£(1.00) = .30327 £(2.00) = .18394

Normal Distribution
M=1 g =1

£(-2.5) = £(2.5) = .01753
£(-1.0) = £(1.0) = .24197

£(0) = .398%
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TABLE I

No. of
samples

10
50
10
50
10
50
10
50
10
20
10
50
10
50
10
50
10
10
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.05
.05
.05
.05
.05
.05
.05
.05
.05
.05

SUMMARY OF UNIFORM DISTRIBUTION PROBLEMS RUN IN
THE EMPIRICAL STUDY FOR THE NONPARAMETRIC CASE

.25
.25
.25
.25
.25
.25

.50
.50
.50
.50
.50
.50
.50
.50
.50
.50

The point z where the
density was estimated

<15
215
215
<15
<15
.15
215
-5
=15
215

.95
-95

-95

-95

-
-9
-9
-5

.95
-95
-95
.95
.95



#9

Prob. no.

U-1

U-3

U-5

u-T

u-9

TABLE II

RESULTS OF UNIFORM DISTRIBUTION PROBLEMS LISTED IN TABLE I

.05
.25
.50
15
.5

.05
.25
.50
215
.95

.05
.25
.50

95

.05
.25
.50
P
-9

.05
:50
75
.95

A

fn(Z)
.96231

=

.26147
117k
.14999

. 78459

e

46334
65453
.61989
. 94361

.86L4LT

o

.20246
.30236
.036%0
.15362

89503

.73812

.04738

.96931

-23992

77807

12740
.18992

. 96097

.10176
.04k352

-

/N A

var fn(z)

O4377
.02382
.oksky
.06103
.02389

.12073
.02308
.24283
.20868
.02306

.09253
.01k02
.01831
.01925
.05301

.01143
.01621
.00535
.01328
.01024

.03412
.03548
.00504
.02456
.01272

Prob. no.

u-2

U-k

u-6

u-3

U-10

)

S e N Ny o
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<9

Prob. no.

U-11

U-13

U-15

U-17

.25
.95

.25
.95

.25

.25
-9

TABLE II (cont.)

-

D1 ()
n

01117

.01031

.00562
.02186

.00591
.00811

.00S%0k
.00161

Prob. no.

U-12

U-1k4

U-16

U-18

.25

.25
.95

.25
.95

.25
.95

e ™ 2 AR, AT T

>4

Tl = T T SR SR N S

I PR L TR

.09559
06274

07590
.00803

.07085
.C1370

.00901
.06097



TABLE IIT

SUMMARY OF EXPONENTIAL DISTRIBUTION PROBLEMS RUN IN
THE EMPIRICAL STUDY FOR THE NONPARAMETRIC CASE

Prob. No. of obs. No. of k B The points z where the
no. per sample=n samples density was estimated
E1l-1 10 10 3 5 .25 .50 1.0 2.0
El-2 10 50 3 5 .25 .50 1.0 2.0
F1-3 25 10 3 .5 .25 .50 1.0 2.0
El-k4 25 5C 3 .5 .25 .50 1.0 2.0
E1-5 25 10 5 5 .25 .50 1.0 2.0
E1l-6 25 50 5 .5 .25 .50 1.0 2.0
E1-7 25 10 7 .5 .25 .50 1.0 2.0
E1-8 25 50 T .5 .25 .50 1.0 2.0
E1-9 50 10 7 .5 .25 .50 1.0 2.0
E1-10 50 50 7 .5 .25 .50 1.0 2.0
E1-11 100 10 7 .5 .25 1.0
E1-12 100 50 7 5 .25 1.0
E1-13 100 10 10 .5 .25 1.0
El-1% 100 50 10 5 .25 1.0
E1-15 100 10 12 .5 .25 1.0
E1-16 100 50 12 .5 .25 1.0
E1-17 500 10 22 .5 .25 1.0
E1-18 1000 10 30 .5 .25 1.0
E1-19 10 10 3 2.0 .25 .50 1.0 2.0
E1-20 10 50 3 2.0 25 .50 1.0 2.0
El-21 25 10 3 2.0 25 .50 1.0 2.0
E1-22 25 50 3 2.0 .25 .50 1.0 2.0
El1-23 25 10 5 2.0 .25 .50 1.0 2.0
E1-24 25 50 5 2.0 .25 .50 1.0 2.0
E1-25 25 10 T 2.0 .25 .50 1.0 2.0
E1-26 25 50 7 2.0 25 .50 1.0 2.0
E1-27 50 1C 7 2.0 25 .50 1.0 2.0
E1-28 50 50 7 2.0 .25 .50 1.0 2.0
E1-29 100 ic 7 2.0 .25 1.0
E1-30 100 50 7 2.0 .25 1.0
E1-31 100 10 10 2.0 .25 1.0
E1-32 100 50 10 2.0 .25 1.0
E1-33 100 10 12 2.0 .25 1.0
E1-34 100 50 12 2.0 .25 1.0
E1-35 500 10 22 2.0 .25 1.0
E1-36 1000 10 3 2.0 .25 1.0



TABLE IV

RESULTS OF EXPONENTIAL DISTRIBUTION PROBLEMS LISTED IN TABIE III

L9

Prob. no. z ? (z) 62} £ (z) Prob. mo. =z ? (2)
n n n

.25 . 98562 .07842 .25 37902

El-1 .50 .75498 .00670 E1-2 .50 21984
1.00 34732 .00244 1.00 31804

2.00 .10313 .00003 2.00 10922

.25 .38593 .0kkoe .25 L6637

ELl-3 .50 .02351 .06263 El-L .50 99896
1.00 JLOo3T7h .00211 1.00 L3792

2.00 06157 .00001 2.00 07828

.25 51422 .01986 .25 48670

E1-5 .50 . 91269 .01425 E1-6 .50 50736
1.00 2841k .00054 1.00 37968

2.00 .09105 .00009 2.00 08709

.25 .5L4LTT .05097 .25 35898

E1-7 .50 .73138 .00210 E1-8 .50 87525
1.00 .35359 .00087 1.00 30805

2.00 .10219 .00002 2.00 10095

.25 .23015 .03320 .25 65895

E1-9 .30 64764 .00184 E1-10 .50 4732
1.00 35592 .00085 1.00 35554

2.00 07535 .00002 2.00 07228

El-11 .25 23271 .03611 El-12 .25 L4500
1.00 .27065 .00116 1.00 28623

E1-11 .25 .16631 .01363 E1-1k4 .25 34312
1.00 .30122 .00032 1.00 29822
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Prob. no.

E1-15

E1-17

E1-19

El-21

El-23

E1-25

El-27

.25
.00

.25
.00

.25
.50
.00
.00

.25

.00
.00

.25
.50
.00
.00

.25
.50
.00
.00

.25
.50
.00
.00

%n(Z)

1.2775k4
27436

1.20023
27561

.60371
.541k5
4181k
.23648

.56115
. 95150
.64018
.198%0

L 382k
55152
. 34382
.20135

42013
L3635
.31229
.19696

L7175
.38321
.31698
.22060

TABLE IV (cont.)

N\ A

var fn(z)

.00988
.00029

.01380
.00012

.01230
.01248
.00380
.00101

.01761
2177
.08192
.00043

.00321
.01024
.00247
.000 Tk

.004T3
.00166
.00052
.00007

.00285
.00129
.00138
.0009k

Prob. no.

E1-16

E1-18

E1-20

El-22

El-24

E1-26

E1-28

.25
.00

.25
.00

.25
.50
.00
.00

.25

.00
.00

.25

.00
.00

.25
.50
.00
.00

.25
.50
.00
.00

>

1.27768
.31312

1.25589
.26545

.56046
.51860
39516
.26877

66830
66625
L141535
.25973

.51852
48579
.30814
.21617

sl
45066
. 36595
.20278

.51363
45625
. 32658
19267
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Prob. no.

E1-29

El-31

E1-33

E1-35

.25

.25
.00

.25
.00

.25
.00

7N\

va

L2}

TABLE IV (cont.)

(z)

>
B

.00k23
00076

.00092
.00045

.00053
.00056

.00097
.00057

Prob. no.

E1-30
El-32
E1-34

El-36

Z
.25
1.00

.25
1.00

.25
1.00

.25
1.00

(z)

.50426
.36398

L8h66
. 33608
47853
.3252%

48259
.28969

var fn(z)

.00150
.00042

.00033
.00028

.00037
.00025

.00070
.00021




TO

Prob.
no.

E2-1
E2-2
E2-3
E2-4
E2-5
E2-6
E2-7
E2-8
E2-9
E2-10
E2-11
E2-12
E2-13
E2-1k4
E2-15
E2-16
E2-17
E2-18
E2-19
£2-20

SUMMARY OF EXPONENTTAL DISTRIBUTION PROBLEMS RUN IN
THE EMPIRICAL STUDY FOR THE MAXIMUM LIKELIHOOD CASE

No. of obs.
per sample=n

10
10
25
25
50
50

100
100
500

1000
10
10
25
25
50
50

100
100
500
1000

TABLE V

Ho. of
samples

10
50
10
50
10
50
10
50
10
10
10
50
10
50
10
50
10
50
10
10

[ASZRACIRAVEAVER\OIN AV IR \O TN AV TR AV I \V]

p

oRoNoRoReRoRoRoRoR-RC RV RV ICIC IV RCIC R IV

The points z where the
density was estimated

.50
.50
.50
.50
.50
.50

.50
.50
.50
.50
=50
.50

HE R BER R R R e
D000 0OOO0ODDOOOODODDOOO

R NN NN
COO0O0OO0O0

[AVE\VELVIR\S IV V)
[eNeoNoNoNoNe]

.
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Prob. no.

E2-1

E2-3

E2-5

E2-7

E2-9

E2-11

E2-13

TABLE VI

RESULTS OF EXPONENTIAL PROBLEMS LISTED IN TABLE V

zZ

.25
.50

1.00

.00

.25

.50,

.00
.00

.25
.50
.00
.00

.25
.00

.25
.00

.25
.50
.00
.00

.25
.50

1.00
2.00

?n(Z)

.28L63
65745
.20387
.02783

.26504
.71880
.23912
02953

.21988
.72762
.263%0
.03667

.16868
.28685

19919
.27652

42249
. 36899
.28342
TLTY

42936
. 37852
29478
.18016

62} ?n(z)

.00251
.00128
.00114
.00007

.0011k
.00005
.00029
.00003

.00082
.00001
.00018
.00003

.00053
.00009

.00005
.00001

.00218
.00120
.00031
.00001

.00066
.00037
.00010
.00000

Prob. no.

E2-2

E2-4

E2-6

E2-8

E2-10

E2-12

E2-1k4

Z

.25
.50
1.00
2.00

.25

.50
1.00
2.00

.25
.50
1.00
2.00

.25
1.00

.25
1.00

.25

.50
1.00
2.00

.25
.50
1.00
2.00

Hd

(z)

.19045
.70168
.26226

.0k535

22792
.T1313
.25257
.036%0

.17%02
. 72896
.28195
.04393

.21115
2699

.21698
.26870

45828
- 39661
.29922
17473

44530
.39118
. 30230
.18150

var fn(z)

.00060
.00003
.00012
.00002

.00035
.00002
.00008
.00001

.00012
.00000
.00002
.00000

.00006
.00001

0000k
.00001

.00035
.00018
.0000%
.00000

.00042
.00023
.00006
.00000
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Prob. no.

E2-15

E2-17

E2-19

.25
.50
.00
.00

.25
.00

.25
.00

TABLE VI (cont.)

/N A
var fn(z)

.00024
-0001k
.0000k
-00000

.00008
.00001

.00003
.00000

Prob. no.

E2-16

E2-18

E2-20

.25
.50
.00
.00

.25
.00

.25
.00

:18216

Lhha2
. 30348

.45276
.30769




-

T e o omes

ot

Prob.
no.

N1-1
N1-2
N1l-3
N1-4
N1-5
N1-6
N1-7
N1-8
N1-9
N1-10
N1-11
N1-12
N1-13
N1-1kh
N1-15
N1-16
N1-17
N1-18

TABLE VII

SUMMARY OF NORMAL DISTRIBUTION PROBLEMS RUN IN
THE EMPIRICAL STUDY FOR THE NONPARAMETRIC CASE

No. of obs.
per sample=n

10
10
26
26
26
26
26
26
50
50
100
100
100
100
100
100
500
1000

No. of
samples

10
50
10
50
10
20
10
50
10
50
10
20
10
50
10
50
10
10

k

N =11~ AAWN WD W AN

N
BROPE6

The points z where the
density was estimated

-2.5
-2.
-2.
2.
-2.
-2.
-2.
2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.
-2.

T\ A\ A \UT AN\ A\ A T A\ LU

-1.
-1.
-1,
-1.
~-1.
-1.
-1.
-1.
-1.
~1.

oNeoNoNoNoNoNoRo NN

[eNoNoRoReNoNoNoNoNe
oNoNoNoNoRoNoNoNoN/

PHRRPRFPHRFRREHERRRPRRRP S
ok RoXeXoRe ke XoReXoReXeReReXeReRe Xe)

AVENV IV I \VE VI \VRR VIR LV AV 1Y)
\JV A\ AT A AN\ AR A

5



Hl,

Prob. no.

Ni-1

N1-3

N1-5

N1-7

N1-9

RESULTS OF NORMAL DISTRIBUTION PROBLEMS LISTED

Z

O O0OW WODOOU WOOOU Mooowu WwoOoow

A

£ (z)

.07076
. 31022
L7612
2492k
.0T609

.0L4278
. 34028
63971
26811
.05436

05935
24620
46142
27469
.06506

.06987
.23109
45013
.28510
.07328

.05114
- 32095
L9571

24kL5
04725

TABLE VIII

4oy ? (2)

.00001.
.00130
.01226
.00061
.00002

.00001
.00557
.01897
.00535
.0000k

.00002
.00179
.00L82
.00064
.00003

.00001
.000Lk
.00150
.00070
.00001

.00001
.00213
00464
.00032
.00000

Prob. no.

N1-2

N1-4

N1-6

N1-8

N1-10

IN TABLE VII

0.

Z

UIOOO\)'\ \'JI:0.00\;\

oo owm wooow WMo oow

A

f (z)

n

.07834
.31198
.57118
. 33845
07775

.0kT722
. 38081
.705%90
.33397
05266

.05842
.29180
48260
. 31206
.06167

07317
.26L01
IS )
.2L4580
.07021.

.04 500
29391
19898
.26113
.05182
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Prob. no.

N1-11

N1-13

N1-15

N1-17

-2.

-2

-2.

-2.

ow Oow ow owu

TABLE VIII (cont.)

Prob. no.

N1-12

N1-14

N1-16

N1-13

[l AC TR o A B o AV ol ]

ow Ou. oW oW



TABLE IX

SUMMARY OF NORMAL DISTRIBUTION PROBLEMS RUN IN THE
EMPIRICAL STUDY FOR THE MAXIMUM LIKELIHCOD CASE

Prob. No. of obs. No. of The points z where the
no. per sample samples density was estimated
N2-1 10 10 -2.5 -1.0 0.0 1.0 2.5
N2-2 10 50 -2.5 -1.0 0.0 1.0 2.5
N2-3 26 10 -2.5 -1.0 0.0 1.0 2.5
N2-4 26 50 -2.5 -1.0 0.0 1.0 2.5
N2-5 50 10 -2.5 -1.0 0.0 1.0 2.5
N2-6 50 50 -2.5 -1.0 0.0 1.0 2.5
N2-7 100 10 -2.5 1.0
N2-8 100 50 -2.5 1.0
N2-9 500 10 -2.5 1.0
N2-10 1000 10 -2.5 1.0



LL

Prob. no.

E2-1

E2-3

E2-5

E2-7

E2-9

O LOoOOWw WOOOUL VOO OoU

o

2 Pd ]

(z)

.02175
.23056
.38799
.24068
02746

.02772
.24610
.38229
.22999
.02066

.01821
24935
.Lo84k1
.23139
L01477

.01569
.2k031

.01705

24418

TABLE X
RESULTS OF NORMAL DISTRIBUTION PROBLEMS LISTED IN TABLE IX

-

N A
var f(z)

0000k
.00163
.00076
.0011k4
.00010

.0000k
.00015
.00025
.00017
.00001

.00001
.00010
.00011
.00009
.00001

.00000
.00003

.00000
.00001

Prob. no.

E2-2

E2-4

E2-6

E2-8

E2-10

4
- o
[@RN)}

ol LoOOOoOWL WVMOOOWUL WMoOoowW

2(2)

.02329
.22012
.4okT5
2377
.02570

.01901

23125
.L0o%00

.23938
.02276

.0170k

23407
~Look1
2453k

.02053

.01822
.23822

01759
.2h027

62} ?(z)

.00001
.00015
.00022
.00015
.00001

.00000

.00005
.00010
.00005
.00001

.00000
.00003
.00003
.00003
.00000

.00000
.00001

.00000
.00001
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